1) The diagram shows the conventional unit cell of a rectangular lattice (sides a_{1} and a_{2}).
i) Write down the fractional co-ordinates of all the lattice points.
ii) Write down suitable primitive lattice vectors.
iii) Calculate the area of a primitive unit cell.
iv) Sketch the Wigner Seitz cell for this lattice.
v) What is the maximum packing fraction?
[Hint for (v): first work out the maximum radius of circles which just touch one another when placed at nearest neighbour sites; then compare the area of such a circle with that of the primitive unit cell].
2) Repeat question (1) for a centered rectangular lattice.
[N.B. the primitive lattice vectors are not the same and still there must be only one lattice point per primitive unit cell].

Rectangular unit cell

$|\vec{a}$.

3) The diagram shows a portion of a 2D lattice. Which of the outlines represent
(i) primitive unit cells,
(ii) non-primitive unit cells;
(iii) not unit cells at all

4) Prove that the ideal ratio of c / a for a hexagonal close packed structure is 1.633 .
5) What is the coordination number for a bcc lattice with a one-atom basis? Show that the packing fraction for identical hard spheres arranged in a bcc lattice is 0.680 .
6) For the fcc lattice with a one atom basis:
(i) what is the co-ordination number?
(ii) how many second-nearest-neighbours does each atom have?
(iii) what is the distance to these, in units of the conventional cubic lattice side a ?
(iv) what is the separation between close-packed planes? Answer: Close packed planes are (111) with spacing $a / \sqrt{ } 3$.
7) At 1190 K , iron has a cubic- F (fcc) lattice with cube edge 0.3647 nm , while at 1670 K it has a cubic-I (bcc) lattice with cube edge 0.2932 nm . In both cases there is a one-atom basis. Calculate the ratio of the densities of iron at these two temperatures. Answer :Ratio of densities is 0.962 .
8) A 2D direct lattice has primitive lattice vectors: $\vec{a}_{1}=a_{1} \hat{x}, \vec{a}_{2}=a_{2}((\cos \theta) \hat{x}+(\sin \theta) \hat{y})$
[Note: these are just vectors of magnitudes a_{1} and a_{2} with angle θ between them].
a) Sketch a portion of this lattice, indicating the cartesian axes and the primitive lattice vectors
b) Show that the reciprocal lattice has primitive vectors: $\vec{b}_{1}=\frac{2 \pi}{a_{1}}\left(\hat{x}-\frac{\cos \theta}{\sin \theta} \hat{y}\right)$, $\vec{b}_{2}=\frac{2 \pi}{a_{2}}\left(\frac{1}{\sin \theta} \hat{y}\right)$.
[Note: the 2D reciprocal lattice can be determined in two ways:
EITHER: write \vec{b}_{1} and \vec{b}_{2} as general vectors in 2D and then determine the values of their x and y components that allow them to satisfy the Laue condition; OR: use the formulae relating 3D reciprocal and direct lattice vectors, but use $\vec{a}_{3}=a_{3} \hat{z}$ for the third direct lattice vector and allow a_{3} to tend to infinity. The third reciprocal lattice vector will then be of magnitude zero, and can simply be ignored.]
c) Sketch the reciprocal lattice indicating its orientation with respect to the direct lattice. [Hint:you should find that \vec{b}_{1} is perpendicular to \vec{a}_{2} and \vec{b}_{2} is perpendicular to \vec{a}_{1}]
d) Sketch both the direct and reciprocal lattices in the case $a_{1}=0.1 \mathrm{~nm}$, $a_{2}=0.2 \mathrm{~nm}, \theta=60^{\circ}$. [Hint: they should be rectangular.]
e) On your sketch of the rectangular reciprocal lattice above, construct the first and second Brillouin zones. [Note: you know how to construct the first one. The second Brillouin zone is the region of k-space (not necessarily a single region) reached from the chosen reciprocal lattice point, by crossing one, and only one, perpendicular bisector - it should have the same 'volume' as the first Brillouin zone.

